

STABILISATION OF THE CERN-PS HEAD-TAIL INSTABILITIES BY LINEAR COUPLING

Elias METRAL

CONTENTS

Theory
Observations
Predictions

STUDY OF THE CERN-PS BEAM FOR LHC

Single bunch of protons with nominal intensity:

$$N_b \approx 10^{12}$$

500 ms long flat bottom at the injection kinetic energy:

$$E_c = 1.4 \,\mathrm{GeV}$$

Bunch length:

$$\tau_b = 160 \text{ ns}$$

Transverse tunes:

$$Q_h = 6.18$$

$$Q_{v} = 6.21$$

Transverse chromaticities:

$$\xi_x \approx -0.9$$

$$\xi_{\rm y} \approx -1.3$$

THEORY (1/2)

Single-bunch instability ⇒ classical Sacherer's formula

$$\Delta \omega_{c,m}^{x,y} = (|m|+1)^{-1} \frac{je \beta I_b}{2m_0 \gamma Q_{x0,y0} \Omega_0 L} \frac{\sum_{k=-\infty}^{k=+\infty} Z_{x,y}(\omega_k^{x,y}) h_m(\omega_k^{x,y} - \omega_{\xi_{x,y}})}{\sum_{k=-\infty}^{k=+\infty} h_m(\omega_k^{x,y} - \omega_{\xi_{x,y}})}$$

$$\omega_k^{x,y} = (k + Q_{x0,y0}) \Omega_0 + m \omega_s$$

$$-\infty \leq k \leq +\infty$$

THEORY (2/2)

Stabilising mechanisms

Landau damping

$$\Delta \omega_{\mathrm{HWHH}}^{x,y} \ge \sqrt{3} \left| \Delta \omega_{c,m}^{x,y} \right|$$

Coupling

$$\left| \frac{K_0}{K_0} \right| \ge \frac{2 \left[-Q_{x0} Q_{y0} V_{\text{eqx}}^m V_{\text{eqy}}^m \right]^{1/2}}{R^2 \Omega_0} \times \frac{\left[\left(V_{\text{eqx}}^m + V_{\text{eqy}}^m \right)^2 + \Omega_0^2 \left(Q_h - Q_v \right)^2 \right]^{1/2}}{-\left(V_{\text{eqx}}^m + V_{\text{eqy}}^m \right)}$$

$$V_{\text{eq}x}^m + V_{\text{eq}y}^m \leq 0$$

$$V_{\text{eqx},y}^m = -\text{Im}\left(\Delta \omega_{c,m}^{x,y}\right)$$

$$Q_{h,v} = \left(\omega_{x0,y0} + U_{\text{eq}x,y}^{m}\right)/\Omega_{0}$$

$$U_{\text{eqx},y}^m = \text{Re}\left(\Delta \omega_{c,m}^{x,y}\right)$$

Coupled Landau damping

OBSERVATIONS (1/8)

Single-bunch instability

Spectrum Analyzer (zero frequency span)

Beam-Position Monitor (20 revolutions superimposed)

RES BW 10 kHz VBW 3 kHz SWP 1.2 s

rise time $\approx 30 \,\mathrm{ms}$

OBSERVATIONS (2/8)

Damping

Stabilisation by Landau damping

1.5	6.8	-10
1.2	6.8	8
$\left I_{oct}^{\mathrm{exp}}\left[\mathrm{A} ight]/I_{oct}^{\mathrm{theory}}\left[\mathrm{A} ight] ight $	$I_{oct}^{ m theory}\left[m A ight]$	$I_{oct}^{\mathrm{exp}}[\mathrm{A}]$

⇒ No emittance blow-up during the first 500 ms :

$$\left(\varepsilon_x^{\text{norm,1}\sigma} + \varepsilon_y^{\text{norm,1}\sigma}\right) / 2 \approx 2 \,\mu\text{m}$$

OBSERVATIONS (3/8)

Stabilisation by coupling

-0.07	0.73	$I_{skew}[A]$
1.7	1.7	$I_{skew}[A] \left \left \underline{K}_0 \right ^{exp} (10^{-5})[\mathrm{m}^{-2}] \right $
1	1	$\left \left \underline{K}_0\right ^{ ext{theory}}(10^{-5})[ext{m}^{-2}]\right $
1.7	1.7	$\left \left. oldsymbol{K}_0 ight ^{ ext{exp}} / \left oldsymbol{K}_0 ight ^{ ext{theory}}$

⇒ No emittance blow-up during the first 500 ms:

$$\left(\varepsilon_x^{\text{norm},1\sigma} + \varepsilon_y^{\text{norm},1\sigma}\right)/2 \approx 1.9 \,\mu\text{m}$$

OBSERVATIONS (4/8)

Modulus of the normalised skew gradient vs. skew quadrupole current

OBSERVATIONS (5/8)

FROZEN FRÖZEN

OBSERVATIONS (6/8)

Single bunch of protons with ~ultimate intensity : $N_b \approx 1.8 \times 10^{12}$

Damping The transverse coherent frequency shifts are multiplied by 1.8

Stabilisation by Landau damping

-9	6	$I_{oct}^{\text{exp}}[A]$
12.2	12.2	$I_{oct}^{ m theory}\left[{ m A} ight]$
0.7	0.5	$\left I_{oct}^{ ext{exp}}\left[ext{A} ight]/I_{oct}^{ ext{theory}}\left[ext{A} ight] ight $

⇒ No emittance blow-up during the first 500 ms :

$$\left(\varepsilon_x^{\text{norm},1\sigma} + \varepsilon_y^{\text{norm},1\sigma}\right)/2 \approx 3.4 \,\mu\text{m}$$

OBSERVATIONS (7/8)

Stabilisation by coupling

1.5	1	1.5	-0.02
1.5	1	1.5	0.68
$\left \left \overline{K}_0 ight ^{ ext{exp}} / \left \overline{K}_0 ight ^{ ext{theor}}$	$\left \underline{K}_{0}\right ^{\text{theory}} (10^{-5})[\text{m}^{-2}]$	$\left \underline{K}_0 \right ^{\exp} (10^{-5}) [\mathrm{m}^{-2}]$	$I_{skew}[A]$

⇒ No emittance blow-up during the first 500 ms :

$$\left(\varepsilon_x^{\text{norm},1\sigma} + \varepsilon_y^{\text{norm},1\sigma}\right) / 2 \approx 3.2 \,\mu\text{m}$$

OBSERVATIONS (8/8)

Stabilisation using both skew quadrupoles and tune separation

PREDICTIONS

8 bunches of protons with nominal intensity:

$$N_b \approx 10^{12}$$

⇒ coupled-bunch instabilities

Theoretical stabilising skew gradient

skew gradient
$$\underline{K}_0 \Big|^{\text{theory}} = 4.3 \times 10^{-5} \,\text{m}^{-2}$$

$$\Rightarrow I_{skew} \le -0.75 \,\mathrm{A}$$
 or
$$I_{skew} \ge 1.4 \,\mathrm{A}$$

The same result is obtained for the ~ultimate beam

CONCLUSION

separation) DAMPED using coupling only (skew quadrupoles and/or tune LHC (single bunch with nominal or ultimate intensity) CAN BE The high-order head-tail instabilities of the CERN-PS beam for

coupling only The coupled-bunch instabilities SHOULD BE DAMPED also by

ACKNOWLEDGEMENTS

Roberto Cappi Dieter Möhl